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A B S T R A C T  

This paper is a comparative study to reveal the factors that have caused the contradictions among 
the previous comparative studies. The emphasis has been placed on the significance analysis of 
input variables, causality analysis and comparative biases. The role of attributes in the 
classification task with respect to their information bearing nature, and how this is approached by 
the classification algorithms are studied. We show that the ranked order of significance variables 
generally differs among the classfication methods. We argue that data dependency is a key factor 
in the analysis of the contradictions among the previous comparative studies. The important role 
of class prototypes and significance measures, particularly the notion of positional causality 
introduced in this paper, facilitates fiture ini7estigation on data transparency, particularly in neural 
networks. Positional causalit4 means the abiliv to explain the sign$cance of a variable in each 
partition of the problem space. Unlike the positional indicators. we argue that global indicators 
are not reliable. We show that global indicators do not satisfy the reasoning expectations of a 
human expert, but may cause confusion. We conclude that neural networks are reliable tools with 
which to analyse the positional causali5 of problem features. 

1 .  Introduction 

Classification is a human need because of the limited 
capacity of the live brain. The common strategy of a 
classification method is to minimise misclassification 
costs of new cases to the characteristics of samples 
whose category is already known. There are many 
theories in cognitive psychology concerning the way 
the human learning system categorises concepts. This 
has led to many computer implementations of 
different learning and categorisation theories. There is 
still a need for a unified, general and complete theory 
to explain human categorisation. 

Classification is a multi-disciplinary science. So there 
is a need for an overall strategy to choose the best of 
the existing methods, or at least finding some 
methods which act to complement each other in  the 
aim of finding the ideal categorisation method. 

Since the popular reappearance of neural networks in 
the 1980’s there have been many comparative studies 
comparing classifiers based on neural networks with 
statistical techniques and tree-based symbolic methods. 
Among the variety of existing neural network models, 
the error back-propagation algorithm has been most 
frequently used in practical applications. 

The previous comparative studies include theoretical 
and experimental comparisons. The goals have been to 

evaluate the performance, accuracy, transparency, 
speed, structure, biological and cognitive plausibility, 
limitations and abilities of the learning systems. Most 
of the studies have been done by statisticians and few 
have considered more than three methods [4]. 

In general, the results of these studies have not been 
consistent. This has led to sharp judgments like those 
of Minsky and Kosko (see [3]). In machine learning 
the works of Quinlan [15, 161 and Weiss & 
Kulikowski [20] are relevant. In statistics the works 
of White [21], Levine et a1 [7 ] ,  Geman et a1 [ 5 ] ,  
Ripley [17], Sarle [18] and Flexer [4] have pointed out 
interesting findings. The most interesting and useful 
statistical work may be found in Cheng et a1 [2] and 
its subsequent commentary by top researchers. The 
valuable work of Michie et a1 [ I O ]  is the result of 
applying some 20 classification methods on about 20 
data sets. These experiments have been performed 
under the StatLog European project. 

All the researchers have tried to avoid possible biases 
in their work, for example by applying the methods 
on the same training as well as test data sets. The 
results are not consistent resulting in contradictory 
statements. According to Ripley, Flexer, Michie et a1 
and many other statisticians, the statistical methods 
are best due to their rich underlying theories. They 
believe that “[t lhe modelling-based approach 
traditional in statistics and pattern recognition can be 
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at least as effective, and often more so “ [ 171. Michie et 
a1 [ 101 indicate that a statistical method always ranked 
first for their data sets. 

Quinlan [15] summarises the conclusions of such 
comparison studies as: “tree-based symbolic methods 
and neural networks tend to be more robust across 
tasks than most other techniques” and “tree-based and 
network classifiers usually have similar accuracy (but 
with networks slightly ahead). Networks however, 
require orders of magnitude more computation to 
develop.” 

The above mentioned inconsistencies have made it 
difficult to extract a general conclusion from such 
studies. The difficulty arises from multi-factorial 
biases governing the studies. The aspects of data 
transparency and opacity are commonly mentioned as 
a disadvantage of neural networks in many studies. 

The purpose of this paper is to answer the questions: 
- Why have the comparison studies not been 

consistent? What are the hidden biases? 
- What aspects of comparison have been 

misunderstood or are at least ambiguous? 
- What are the significance measures and central 

tendencies in classifiers? 
- Has a typical variable the same significance for 

different classification methods? 

2 .  Classification methods review 

We have used three of the most widely used 
classification methods to meet the goals of this study, 
from the areas of machine learning, connectionism and 
statistics. 

2.1. c4.5 

Among the best known supervised machine learning 
algorithms are CART [l], FOIL, ID3, C4.5, and M5 
[14]. C4.5 learns by induction from experiences and 
exemplars [ 141. It is an optimised version of induction 
trees (ID3) capable of applying an appropriate level of 
pruning and tree selection strategies to allow for better 
generalisation. 

2.2. BP 

Multilayer perceptrons (MLPs) trained by the error 
back-propagation algorithm (BP) [9] have been studied 
extensively, and are one of the most popular and 
successful neural network models. We have used 
MLPs trained with one layer of five hidden units with 
the sigmoid activation functions. The normalised 
input and output values have been used to train and 
test the network. 

2.3. LDA 

Statistical methods are supported strongly by 
mathematical theories. They are well defined and well 
formulated classification approaches applied by 
researchers in many scientific domains for many years. 
Linear discriminant analysis (LDA) is the most 
commonly used statistical technique, and was 
introduced by Sir Ronald Fisher. 

It is reported that the results of LDA and a few of 
other statistical methods are more or less the same 
[lo]. LDA uses the posterior probability to make 
decision in assigning a new sample to a category 
based on its discriminant score. 

3 . Significance Measures in 
Classification Methods 

An investigation has been required to find an 
appropriate and reliable method for measuring the 
significance of variables. In the following subsections 
we describe how we have measured them for each 
classification method. 

3.1. Significance Measures in C4.5 

C4.5 uses information theory to assign significance to 
attributes. According to information theory [ 191, the 
information conveyed by a randomly selected pattern P, 

from a sample of n patterns is equal to: 

Info (<)=-logz ( f i (C, ) )=- logz  (e) , 
where Size (C,)  is the number of patterns with class 
C ,  , which is the class assigned to P, and Pr (C,)is the 

probability of a random pattern being in class C , .  

Thus the conveyed information (entropy) of a sample 
T will be 

Znfo(T)=- 1 Pr(C,)*log2 (Pr(C,))  where m is the 

number of classes. 

size ( C )  

m 

r = l  

Quinlan [ 151 defines a significance measure which he 
names the ‘gain criterion’. It is defined as 

gain (x)=Znfo ( T ) -  (Tk) ,  where k x  is the number 

of sub-samples related to test x and Znfo (T , )  is the 
information conveyed by the sub-sample T ,  . Each test 

x is a test of partitioning the problem space in 
accordance with a special variable. 

kr 

k =  I 

It has been suggested to report the most important 
attributes according to the level of the tree in which 
the variable appears [8]. We argue that this would not 
be an appropriate method due to two reasons: 
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I. The output trees of C4.5 are often unbalanced. For 
example, if there is .only one node in the left branch 
and all other variables are in the right branch of the 
tree. 
* II. The number of cases classified by each node and 
its children are not equal in different branches. For 
example a node may classify 60 cases while a node in 
the same or lower level and its children may only 
classify 12 cases. 

Therefore, we suggest the following method: 
1. The variable at the top of the tree or every sub- 

tree is the most important one and conveys the 
highest entropy among the attributes. 

0 2. For each leaf node, we compute the tree benefit of 
retaining the node, according to u=P-y, where 0 
is the number of patterns which would be 
misclassified only if the node were removed. and 
y is the number of patterns which would be 
classified correctly only if the node were retained. 

e 3. The tree benefit of retaining each parent node is 
computed by adding the a’s of its children. 

4. If the variable is repeated several times in different 
levels of a sub-tree, only the U’S of the node in 
highest level is assigned to the variable. 

0 5. If a variable is repeated in two sub-trees in which 
neither is a descendent of the other, their CY‘S are 
added together. 

e 6. The steps 3 to 5 are repeated for all of the nodes 
in higher levels of the tree. 

0 7. The variables appearing in the tree are sorted 
according to their a. 

Note that we have chosen the best tree selected by the 
C4.5 algorithm and have reported the result of its 
classification. If the result of some of the other trees 
have been of some interest we have emphasised the 
trial number of the algorithm. 

3.2. Significance Measures in BP 

In the case of multilayer perceptrons, a few ways have 
been suggested to measure the most significant 
variables. These methods are sensitivity analysis, 
causal index, and hidden index. 

3.2.1. Sensitivity Analysis 

The method of sensitivity analysis measures the 
change in an output unit due to a small change in an 
input variable. It is a non mathematical technique to 
measure significance in neural networks. For each 
input variable x , ,  the impact of a small change in its 

value on an output value y ,  is determined by the 
magnitude of the change in the output value. The 
bigger the change in output value, the more 
significance is assigned to the input unit. The main 

difficulty with this method is initialising the other 
variables of the input vector in an appropriate way. 

These methods have been analysed and applied to a 
few data sets to investigate the regularities of the 
internal representations in neural networks [ 131. 

One way of computing Sensitivity Analysis (SA) is 
to perturb one input slightly with other inputs held 
constant at 0, 0.5, or 1. This approach is inefficient 
because SA usually leads to completely different 
results in separate regions. 

Another approach is to compute SA for one input 
over the range of values for one or a few other inputs. 
This method is also inefficient because having a 
separate perturbation for each input over its range is 
time consuming and makes the analysis of the result 
difficult. 

As an appropriate solution to this problem we have 
used the canonical of each separate cluster, which we 
obtained by training a Bidirectional Neural Network 
[ 1 I ] .  We also averaged the effects of two different 
positive and negative dithers. 

3.2.2. Causal Index 

The causal index [6, 221 is a mathematical method. 
The significance of an input variable i with respect to 
an output variable j is calculated according to the 
following formula: 

(1) 
I ,  H 

c =-- dr’ -f’ (U, ) .  f’ ( U , ) .  c w w 
6 = 1  ,I, I , ,  ‘J  , 

where c is the causal index measure of the 

significance of input i, U ,  is sum of the inputs to 

un i t  x; and H is the number of hidden nodes. The 
proposers assume the product of first two terms 
f ’  (U,) .  f’ ( U h )  is constant, allowing (1) to be 

H 

simplified to c,, = w w (2) 
h = l  ,it I / /  

3.2.3. Hidden Index 

Nejad and Gedeon [ 131 demonstrated the dependency of 
the simplified equation of causal index to the network 
structure and learning parameters. Thus, the 
assumption that product of first two terms is constant, 
is unfounded. We then introduced our method called 
the hidden index. Hidden indices are the columns of 
the matrix C which is calculated according to: 
C =  M * M‘, where M is the weight matrix of the 
trained network andM’ is its transpose. 

Suppose HIuby is the average of the columns 

related to input units and HIH is the column in C for 
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biases. We showed that HI=HI  -HIe  is less 

dependent on the structure of the network and shows 
more similar significances to sensitivity analysis 
values than causal index measure (at least for our data 
sets). 

In this experiment we have used sensitivity analysis 
because used appropriately, this will provide more 
efficient answers less sensitive to the network 
structure than the causal index or hidden index. We set 
the dither to 0.05 and measured the sensitivity of 
inputs with respect to each output neuron around its 
class prototype. The class prototypes have been found 
by BDNN method [16]. The most important variables 
reported are those to which the network is most 
sensitive. 

avK 

For each data set, five neural networks have been 
trained with different parameters. The best neural 
network has been selected according to the results on 
the test data. We have applied the sensitivity analysis 
for each class in our data sets. This has been repeated 
for the single continuous output encoding all output 
classes. For example, for the SFM data set a list of 
seven variables will be reported: one for each class and 
one for a single continuous output node. 

3.3. Significance Measures in LDA 

We had a similar problem in  selecting a method to 
measure significance in the case of statistical 
approach. The correlation coefficients could not be 
used because of the possibility of existence of 
nonlinear relationships among the variables. For 
example, two variables may be highly related together 
but not linearly, so their correlation coefficient may 
be very small. In multivariate regression the 
coefficients of the regression equation can not be 
reliable due to the use of different measure units for 
each variable. 

Standardised coefficients, Beta coefficients, and T test 
of significance provide better results in analysing the 
most significant variables in the multivariate 
regression method. Even these criteria may not be a 
good measure of significance. This happens due to 
some problems such as multicollinearity. The 
problem occurs when there are some significant 
correlations among the independent variables. Thus, 
the T test of significance may not assign a high value 
of significance to a really significant variable, if in 
stepwise entering of variables, one of the highly 
correlated variables was already entered into the 
equation. Moreover, this could not be used in the case 
of classification by the method of linear discriminant 
analysis due to the classes being discrete. 

Thus, we extracted the most significant variables from 
the matrix of pooled within-groups correlations 
between discriminating variables and canonical 
discriminant functions for LDA according to the 
following procedure: 

1. If the cumulative percent of variance for the first 
function is large enough (eg, more than 70% for our 
data), we use the ranked form of variables ordered by 
the size of correlation within functions. The functions 
are ordered by their related eigenvalue, so the first one 
has the highest significance among the functions. 

2. Otherwise, we use a linear combination of the 
variables ordered by size of correlation within 
functions (in our experiments three functions). The 
percentage variance of the function i n  the 
discrimination procedure is used to determine the 
coefficients of this linear combination. 

4. Data Sets 

The following data sets have been used in our 
experiments. 

4 . 1 .  Students Final Mark Prediction 
W'M) 

This data set consists of 153 samples. Each pattern 
has fourteen input attributes. Four outputs have been 
used to classify the marks. Each record comprises 
student information, assessment and subsequent final 
mark for a sample of students from a first year 
computer science subject at the University of New 
South Wales. The major exam component has been 
omitted, which introduced significant noise. 

4 . 2 .  Geographical Information Systems 
(GIs) 

This data set consists of satellite information from 
190 samples from a rectangular grid of 244494 points. 
Each pattern has 16 input attributes and 5 outputs. 
143 records have been used in the training set and 47 
records have been used as unseen data. The satellite 
information has been collected, augmented with 
ancillary terrain data, and preprocessed in the School 
of Geography in the University of NSW to classify a 
large geographical area into some forest supra-type 
categories (eg. dry sclerophyll and wet sclerophyll). 

4 . 3 .  Gross Domestic Product (GDP) 

The original data set consisted of more than 150 
records. Each record has fourteen variables which are 
assigned to some socio-economic statistical 
information. We removed some patterns due to 
missing data for more than three attributes. This 
remaining data set consists of 143 patterns. The data 
is used to predict the GDP for developing countries. 
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We have divided the data into a training set consisting 
of 101 patterns and a test set consisting of 42 
patterns. 

Assign. F1 

Lab-No. 7 

5. Experimental Results 

Lab-No. 10 Lab-No. 2 

Lab-No. 7 *** 

In order to evaluate the generalisation ability, 
positional causality and data dependency in the three 
classification methods, we applied them to the above 
mentioned data sets. Table 1 summarises the results of 
the experiments. For each data set, we have shown the 
training error and the test error for each classification 
method. For each data set, the test data and the 
training data were the same and no special 
preprocessing has been applied to the data sets. 

LDA B P  C 4 . 5  

Altitude 

GE- 1 

There are no significant difference between the results 
of applying these classification methods on the test 
patterns. This may be because we have avoided any 
biases or a lack of favoured representation in the data 
sets for a particular classifier. There are many biases 
governing comparative methods with respect to the 
users and the data sets. These biases will be discussed 
later. However, if we applied appropriate data 
preparation techniques to the data sets for a particular 
classification method, we may get much better result 
for that method. Thus, we might think that the 
method has been the best or better one (as an example 
of preparation techniques for neural networks see 
[W. 

RA- 1 Altitude 

TE! LBT-3 

Tables 2 and 3 show the ranked significant attributes 
in SFM and GIS data sets for each of the classification 
methods. According to our experiments the order of 

classifier. This may be due to the structure, training 
parameters, initialisation and data set. This seems 
natural and we can observe the same phenomenon in 
people. 

significant variables may change slightly for each 

I 

Table 2. Ranked significant attributes in SFM 

I I I 

Test Er 26% 28% 30% 

I LDA I B P  I C 4 . 5  I 
I I 

I Lab-No. 4 I Assign. H1 I Lab-No. 7 I 

I i 

I Assign. H1 I Enrol-Status I ***  I 
Table 3 Ranked Significant attributes in CIS 

/bll LDA I Topo. Pos. Topo. Pos. Topo. Pos. 

LBT-6 LBT-5 

I LBT-7 I LBT-2 I LBT-6 I 

From Tables 2 and 3,  we can see that different 
methods assign different significance to a variable. 
This is essentially due to the way in which a learning 
algorithm organises (reorganises) and stores the 
knowledge. 

Note that none of the classifiers were supported by 
expert knowledge in deciding the significant order of 
variables. This is done by the learning algorithms. 
This implies that the relative contribution of 
attributes could differ for each classifier. For example, 
the student mark on assignment P1 may be very 
important as represented by LDA and BP, but not by 
c4 .5 .  

According to our results, the classifiers usually agree 
on the most significant variables (at least for our data 
sets). This implies that the main difference should be 
in measuring the partial correlations after entering the 
most significant variable. The most important 
variables have been topological position, Mid-Exam 
mark, and Doctor per 1000 people in the GIs, SFM, 
and GDP data sets. 
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Table 4. Ranked significance attributes in SFM classes. 

Mid 100 

P1 20 

DIST I CRED I PASS I FAIL I 
Mid 100 M d  100 Mid 100 

p l  21 p l  23 p l  67 

ES 10 

Lab4 -10 

:lo -~~~~~ 15 IH2 23 /yb lO  61 I 
15 LablO -14 H1 13 Lab7 59 

12 LablO -12 Lab4 59 

ES -10 Lab7 11 Course 32 

Lab4 -9 ES -10 HI 27 

Table 4, shows the positional causalities of a trained 
neural network for SFM data set. The selected 
positions have been the cluster centroids obtained by 
BDNN. The numbers indicate that the contribution 
significance of the variables in the task of 
classification varies in each partition of the problem 
space. 

The order of variables are not the same in different 
trees and different trained networks, at least for our 
data sets. For example, the most significant variables 
in one net or tree may be different in subsequent trials 
with the same or varied parameters. 

In the case of C4.5 usually all variables will not 
appear in tree nodes. Each variable may appear in 
more than one level for an induction tree. The output 
trees usually’are not balanced. The C4.5 rules are not 
essentially explanation rules but are discrimination 
rules. 

6 .  Data dependency in classification 
methods 

To train a learning method to efficiently partition a 
problematic model space, either the sample size 
should be increased or the model complexity decreased. 
Increasing the sample size is not always possible, so 
the model complexity should be decreased. Data 
preparation methods and model pruning techniques are 
two ways of reducing the model complexity. 

Data representation methods usually either reduce the 
dimensionality of data or otherwise manipulate data 
ignoring the dimensionality. Even if the best data 
preparation methods are used, sample size limitations 
may hinder the learning model from finding the best 
fit for a particular problem. 

The complexity of classification problems with high 
dimensionality arises from the fact that high variance 

in less significant or unimportant variables may 
change the appearance of similar patterns to 
completely different patterns and vice versa. Thus, 
dimensionality reduction methods are very important. 
Feature extraction, data transformations, principal 
component analysis and expert knowledge are usually 
used to decrease the data dimensionality. 

LDA and C4.5 do not use all of the independent 
variables in the model produced. They use a variable 
only when it significantly increases the classification 
performance without losing some degree of freedom. 
In LDA, F-to-remove values should be computed to 
test the removal or contribution allowance of a new 
variable in the model. Dimensionality reduction is 
also very important in neural networks. 

Referring to the StatLog project, Ripely [17] writes 
“comparisons with other methods are rare, but when 
done carefully often show that statistical methods can 
outpeflorm state of the art in neural networks”. What 
Ripley is saying is correct, not only for statistical but 
also for neural and machine learning methods. To 
generalise his statement we argue that when desired 
data preparation is done carefully f o r  a particular 
model, the model can often out-peflorm other models. 
We have shown this for the case of neural networks 
by introducing four preprocessing techniques [ 121. 

7. Conclusion 

We have revealed the lack of consistency among the 
previous comparative studies of classification 
methods. To analyse the contradictions, the biases 
(both user and data dependent) were considered and use 
of significance measures in classification methods was 
investigated. 

We showed that global causalities may cause 
confusion instead of comprehension. Thus, a 
positional causality is preferred. We investigated the 
plausibility of determining the positional causality 
among the classifiers. We concluded that from the 
classification methods tested, neural networks trained 
by BP are reliable tools with which to analyse the 
positional causality of problem features. This shows 
an advantage of neural networks from the data 
transparency point of view, for which they are often 
otherwise criticised. 

The analysis of the ranked list of significant variables 
showed a main difference among the contribution of 
independent variables in the task of classification. 
This was not the case in comparing the generalisation 
ability of the classifiers. This may imply useful 
suggestions for designing hybrid systems in the 
future. 
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